Nutritional Influences in Pregnancy and Postpartum for Women and their Children

and four sketches of the right hand

Alexis J Hure, BND (Hons I)

A thesis submitted to the University of Newcastle, Australia in fulfilment of the requirements of the degree of Doctor of Philosophy (PhD)

December 2008

Statement of Originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library**, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

**Unless an Embargo has been approved for a determined period.

.....

Alexis J Hure

Declaration of Collaboration

The work embodied in Chapter 4 (Diet and Pregnancy Status in Australian Women) has been published in Public Health Nutrition, an international peer-reviewed journal.

This work was completed in collaboration with Dr Anne Young from Women's Health Australia. Dr Anne Young performed the statistical analyses for this paper and provided intellectual input for the development of the manuscript.

Associate Professor Clare Collins (primary PhD supervisor) and I attest to the significant and independent contribution I have made to this paper. This has been formally recognised with leading authorship on this publication.

All other work contained within this thesis was completed with appropriate input and guidance from my PhD supervisors, Associate Professor Clare Collins and Professor Roger Smith.

.....

Clare E Collins

.....

Alexis J Hure

Acknowledgements

Firstly I wish to express sincere gratitude to my PhD supervisors Associate Professor Clare Collins and Professor Roger Smith. You are each an inspiration and have made the PhD experience, for me, a pleasure and an honour. Clare, you have continuously demonstrated exceptional generosity with investments of your intellect, time and energy, motivation and support. Roger, thank you for sharing your brilliance, enthusiasm for the unknown and critical thinking skills. To both, thank you for your trust and confidence. I look forward to our ongoing research endeavours.

Thank you to our WATCH Study participants, who have provided and continue to provide their time, personal information and support for this research. I would also like to acknowledge the participants of the Australian Longitudinal Study on Women's Health and the staff of Women's Health Australia, who have generously provided the data which has been analysed and presented in Chapter 4. Thank you especially to Dr Anne Young for providing the statistical support for this chapter. Your professionalism and methodical nature are qualities I aspire to and it was a pleasure working with you.

I would like to acknowledge other professional persons who have provided their support in some capacity. These include: Dr Lisa Wood, Dr Janet Warren and Dr Jonathon Paul, who generously provided their theses for guidance. Dr Eng Cheng Chan has provided consistent mentoring and motivation since commencing my postgraduate studies. Dr Ian Wright (Neonatologist), Professor Warwick Giles (Obstetrician), Professor Sandra Capra (Fellow of the Dietitians Association of Australia and Order of Australia) and Professor Rob-Sanson Fisher (Health Behaviourist) have provided professional guidance on various aspects of the research within this thesis. Trish Engle, Therese Finnegan and Annie Wright did a great job recruiting for the WATCH Study. Thank you to Patrick McElduff for the statistical support provided for the analyses of the WATCH Study data. Narelle Eddington and Lynn Clark have been immensely helpful in organising the pathology for our WATCH Study sample. Thank you to Lorelle Hood and Helen Parish (Accredited Practising Dietitians) who have helped collect some of the WATCH Study data. Thank you also to Dr Giavanna Angeli for the guidance provided on ethics applications and to Dr Mark Read for the stimulating intellectual discussions offered regularly.

There has been a lot of practical help provided along the way by financial, administrative and managerial staff. In particular, Ilyse Jacobson, Lynne Sutton, Elaine Terry and Rebecca Hamby at the University of Newcastle have been terrific. Joanne Davies, John Fitter, Maria Bowman and Sheila Duffy within the Mothers and Babies Research Centre have provided a great deal of assistance. I would also like to acknowledge the antenatal clinic staff at the John Hunter Hospital.

Thank you to Dr Chittaranjan Yajnik for allowing me to undertake a research excursion at the Diabetes Centre of the King Edward Memorial Hospital, Pune. Sincere gratitude is also expressed to Ms Himangi Lubree and Ms Lalita Ramdas (my Indian sisters) for the learning experience they facilitated and their friendship.

I would like to acknowledge my PhD peers who have shared the journey in some way. These include Doctors Tracy Burrows, Michelle Palmer, Anne Marley, David MacIntyre, Gemma Madsen, and soon to be Doctors Jane Watson, Melinda Neve and Lana Mitchell.

Thank you to my many friends who have shared in parts of the experience. Jess Scott, Ingrid Berling and Visti Hedegart deserve special mention.

I would like to acknowledge the emotional support of my family, including my parents, Julie and Anthony Hure, my siblings, Sheriden Hure, Leah Swan and Paul Swan, and my grandparents Marie Hure (deceased), and Jean and Jack Burke. A special mention must go to Dad (Anthony) for proof reading parts of this thesis. Thank you especially to my twin sister Sheriden, who has lived the experience second hand on just about a day-by-day basis.

Finally, I would like to acknowledge the love and support of my partner Damien Jackel. Your patience and understanding have been a tremendous strength. Thank you for your ongoing encouragement and belief in me.

Contents

Statement o	f Originality	ii
Declaration	of Collaboration	iii
Acknowledg	gements	iv
List of Abbi	reviations	xii
Thesis Publ	ications and Presentations	xiv
Awards		xiv
Published	articles	xiv
Oral prese	entations with published abstracts	xiv
Poster pre	sentations with published abstracts	XV
Invited sp	eaker presentations	xvi
Abstract	I	1
Chapter 1 G	eneral Introduction	3
1.1 Pr	egnancy and programming	4
1.2 Th	iesis summary	8
1.2.1	Thesis aims and hypotheses	9
Chapter 2 I	literature Review	
2.1 Int	troduction	
2.2 Th	e developmental origins of health and disease	13
2.2.1	An Introduction to the Barker hypothesis	13
2.2.2	Epidemiological evidence	14
2.2.3	The 'thin-fat' Indian baby	17
2.2.4	Catch-up growth	20
2.2.5	The predictive adaptive response and theory of mismatch	21
2.2.6	Critical windows	22
2.2.7	Experimental evidence	25
2.2.8	Underlying mechanisms	25
2.2.9	Controversy and limitations	
2.3 Ph	ysiologic and metabolic adjustments in pregnancy	
2.3.1	The placenta	
2.3.2	Blood volume and composition	
2.3.3	Weight gain	
2.3.4	Energy	
2.3.5	Macronutrient metabolism	35
2.3.6	Micronutrient metabolism	
2.3.7	Homocysteine	40
2.4 Ma	aternal nutrition	43
2.4.1	Nutritional requirements of pregnancy	43
2.4.2	Nutrient supplementation	50
2.4.3	Dietary intake in pregnant women	52
2.5 Ea	rly growth and development	61
2.5.1	Fetal growth	61
2.5.2	Estimating gestational age	62
2.5.3	Fetal nutrition	64
2.5.4	Sex-specific differences	65
2.5.5	Infant growth	66
2.6 Pu	blic health and the life-course perspective	68

Chapter 3 M	aterials and Methods	70
3.1 Wo	men's Health Australia	71
3.1.1	Ethics approval	71
3.1.2	Data acquisition	71
3.1.3	Statistical analyses	71
3.2 The	e ABCD obesity study	72
3.2.1	Ethics approval	72
3.3 The	e WATCH Study	73
3.3.1	Ethics approval	73
3.3.2	Study design	73
3.3.3	Subjects	73
3.3.4	Data collection	76
3.3.5	Statistical analyses	87
Chapter 4 D	iet and Pregnancy Status in Australian Women	89
4.1 Intr	oduction	90
4.2 Sub	jects and methods	92
4.2.1	Data collection	92
4.2.2	Sample	92
4.2.3	Australian Recommended Food Score	93
4.2.4	Nutrient Reference Values	94
4.2.5	Statistical analysis	94
4.3 Res	ults	96
4.4 Dis	cussion	104
4.5 Con	nclusion	108
4.6 Acl	knowledgements	109
Chapter 5 A	Recruiting Failure Turned Success	110
5.1 Intr	oduction	111
5.2 Me	thods	112
5.2.1	Participants	112
5.2.2	Ethics approval	112
5.2.3	Participant involvement	113
5.2.4	Procedures	113
5.3 Res	ults	115
5.4 D1s	cussion	117
5.4.2	Recruiting materials	119
5.4.3	Limitations	120
5.5 Coi	iclusions	122
5.6 Acl	cnowledgements	123
Chapter 6 I	viaternal weight Unange in Pregnancy Predicts Fetal Size b	out Not
Auposity	aduation	124
	torials and methods	123 196
0.2 Ma	Statistical analysis	120 127
0.2.1	Stausucal analyses	12/
0.3 Kes	uns	130 120
0.4 D1S	cussion	138 140
U.J ACI	Motornal and Infant Vitamin D12 Falata and Hamaaria	140
Dramanay a	nd Postpartum	eme m 1/1
	nu i osipai tuin	141. 140
/.1 1111		142

7.2 N	fethods	144
7.2.1	Participants	
7.3 R	esults	
7.3.1	Participants	
7.3.2	Maternal plasma and red cell folate	
7.3.3	Maternal vitamin B12 and folate	
7.3.4	The homocysteine sub-study	
7.4 D	Piscussion	
7.4.1	Limitations	
Chapter 8	Final Discussion	
8.1 F	uture directions	
8.1.1	Clinical relevance	
8.2 F	inal Conclusion	
List of References		
Appendices		

List of Figures

Figure 2.1 Variation in body fat measured by dual energy x-ray absorptiometry (DEXA)
despite no difference in body mass index (BMI)
Figure 2.2 Percentage body fat at birth comparing 19 mammalian species
Figure 2.3 Mean body mass index (BMI) between birth and 12 years in 6060 Finish
children born in Helsinki between 1934 and 1944 according to their age of adiposity
rebound
Ecourte 2.4 Changes in basel metabolic rate (DMD) during programmer in women from
Figure 2.4 Changes in basal metabolic rate (BWR) during pregnancy in women from
Cambridge, England (mean values); in women from Keneba, The Gambia (mean
values); and in two individuals from Cambridge (subjects 1 and 2)
Figure 2.5 Magnetic resonance images at 38 weeks' gestation, showing fetal adiposity
in two mothers with gestational diabetes (diet controlled only)
Figure 2.6 The methionine-homocysteine metabolic cycle
Figure 2.7 The association between plasma total homocysteine (pHcy) and various
clinical outcomes, including pregnancy complications, as measured in the Hordaland
Homocysteine Study (HHS), Norway
Figure 2.8 Vitamin B12 absorption from the gastrointestinal tract, transport in the
circulation, and function within the cell
Figure 3.1 Timeline of the WATCH Study visits, from approximately 18 weeks'
gestation to two years after birth73
Figure 3.2 Attrition for the WATCH Study up to six months after birth (visit 6) for the
182 women who gave their consent to participate
Figure 3.3 Location of skinfold sites, as defined by the International Society for the
Advancement of Kinanthropometry
Figure 3.4 Location of the girth measurements, as defined by the International Society
for the Advancement of Kinanthropometry
Figure 3.5 Triangulation method of the WATCH Study dietary data collection
Figure 6.1 Fetal percentiles (5 th , 50 th and 95 th) for the WATCH Study: abdominal
circumference (cm), total and fat areas (cm ²), by gestation (weeks) $(n \ 126)$,
Figure 7.1 The correlation between maternal red cell folate (rcFol) and plasma folate
(nFol) levels during pregnancy and postpartum: 475 observations from 166 women in
the WATCH Study 148
Figure 7.2 Boxplots of plasma vitamin B12 plasma folate, and red cell folate levels for
175 women in the WATCH Study at 20 and 36 weeks' gestation (gest) and at 13 and 26
weeks' postpartum (post) 1/9
Figure 7.3 Comparison of plasma vitamin B12, plasma folate and red cell folate during
program $(n, 175)$ and postportum for the WATCH cohort (n 175) and a reference population of
pregnancy and postpartum for the wATCH conort $(n 175)$ and a reference population of basilthy Danish woman $(n 441)$
Eigure 7.4 WATCH Study infant folder a scores at age six months (n 16) derived from
Figure 7.4 wATCH Study infant folder 2-scores at age six months (n 10) derived from plasma (0) and red cell (1) folder values.
prasma (0) and red cell (1) totale values $\dots \dots \dots$
Figure 7.5 Boxplots of plasma vitamin B12, plasma folate, red cell folate and plasma
nomocysteine during pregnancy and after birth in 16 WATCH Study women and their
singleton infants at age six months

List of Tables

Table 2.1 Compartmental and cumulative weight gain during pregnancy
Table 2.2 Optimal total pregnancy weight gain by pre-pregnancy body mass index
(BMI) based on the odds ratio for adverse maternal and perinatal outcome*
Table 2.3 Nutrient Reference Values for Australian and New Zealand women according
to pregnancy status
Table 2.4 A summary of Cochrane systematic reviews and meta-analyses of nutrient
supplementation for pregnancy
Table 3.1 Data collection for the WATCH Study: when, what and who?
Table 4.1 Participant demographics for the young cohort of the Australian Longitudinal
Study on Women's Health according to pregnancy status
Table 4.2 Unadjusted and adjusted* mean Australian Recommended Food Scores
(ARFS) for the young cohort of the Australian Longitudinal Study on Women's Health
according to pregnancy status
Table 4.3 Mean and standard deviation (SD) component scores and total Australian
Recommended Food Scores (ARFS) for the young cohort of the Australian
Longitudinal Study on Women's Health according to pregnancy status
Table 4.4 Energy-standardised (per 1000 kcal) daily macro- and micronutrient intakes
for the young cohort of the Australian Longitudinal Study on Women's Health by
quintiles of Australian Recommended Food Score
Table 4.5 Daily macro- and micronutrient intakes for the young cohort of the Australian
Longitudinal Study on Women's Health according to pregnancy status
Table 4.6 Daily Nutrient Reference Values for Australia and New Zealand ⁽²³⁹⁾ : selected
macro- and micronutrients
Table 5.1 Potential reasons for the recruiting failure of the Assessment Before Children
Develop Obesity Study
Table 5.2 Recruiting response rates for the ABCD Obesity, Math Model and WATCH
Studies
Table 5.3 Recruiting material readability statistics for the ABCD Obesity, Math Model
and WATCH Studies
Table 6.1 Maternal age, height and weight characteristics for women in the WATCH
Study, according to study visit
Table 6.2 Linear mixed-models with maternal pre-pregnancy weight and body mass
index (BMI) as the predictors of fetal adiposity and size during pregnancy (n 160)133
Table 6.3 Linear mixed-models with maternal weight and body mass index (BMI) as
statistically significant predictors of fetal adiposity and size during pregnancy135
Table 6.4 Statistically significant* linear mixed-models of change in maternal weight
and body mass index (BMI) as predictors of change in fetal size (between conception
and 36 weeks' gestation)136
Table 6.5 Weight change (kg) for the WATCH Study participants from pre-pregnancy
to 36 weeks' gestation according to pre-pregnancy body mass index (BMI) category 137
Table 7.1 Accurate analytical and normal reference intervals for the biomarkers assayed
in the WATCH Study of vitamin B12, folate and homocysteine in pregnancy and after
birth145
Table 7.2 Maternal and infant characteristics of the 175 mothers and 16 mother-child
pairs included in the WATCH Study of vitamin B12, folate and homocysteine during
pregnancy and after birth147

Table 7.3 Plasma vitamin B12, plasma folate, and red cell folate levels in the WATCH Study at 20 and 36 weeks' gestation (Gest) and at 13 and 26 weeks' postpartum (Post) Table 7.4 Frequency (n) of maternal pre-pregnancy and early pregnancy (before 20 Table 7.5 Maternal plasma vitamin B12 (pB12), plasma folate (pFol), red cell folate (rcFol) and plasma homocysteine (pHcy), according to pre-pregnancy and early pregnancy (before 20 weeks' gestation) vitamin B12 and/or folate supplementation..153 Table 7.6 Infant plasma vitamin B12, folate z-scores and plasma homocysteine Table 7.7 Plasma vitamin B12, plasma folate, red cell folate and plasma homocysteine during pregnancy and after birth in a sample of 16 women and their singleton infants at age six months157 Table 7.8 Pairwise correlation coefficients (with *P*-values) for log transformed plasma vitamin B12, plasma folate, red cell folate and plasma homocysteine during pregnancy and after birth in a sample of 16 women and their six month old infants from the WATCH Study......158 Table 7.9 Forward stepwise regression analyses using maternal variables during pregnancy and postpartum as predictors of infant vitamin B12, folate and homocysteine

List of Abbreviations

ABCD Obesity	Assessment Before Children Develop Obesity
AC	Abdominal circumference
ACCVFFQ	Anti Cancer Council of Victoria Food Frequency Questionnaire
AGA	Appropriate for gestational age
AI	Adequate intake
ALSPAC	Avon Longitudinal Study of Parents and Children
ALSWH	Australian Longitudinal Study on Women's Health
ANOVA	Analysis of variance
ARFS	Australian Recommended Food Score
BMI	Body mass index
BMR	Basal metabolic rate
BPD	Biparietal diameter
CE	Coefficient
CHD	Coronary heart disease
CI	Confidence interval
CSIRO	Commonwealth Scientific and Industrial Research Organisation
DEXA	Dual energy x-ray absorptiometry
DNA	Deoxyribonucleic acid
DOHaD	Developmental origins of health and disease
DQES	Dietary Questionnaire for Epidemiological Studies
DQI-P	Diet Quality Index for Pregnancy
EAR	Estimated average requirement
FFQ	Food frequency questionnaire
FL	Femur length
FOAD	Fetal Origins of Adult Disease
Folbp1	Folate-binding protein one
HAPS	Hunter Area Pathology Service
HC	Head circumference
HDL-C	High density lipoprotein-cholesterol
HHS	Hordaland Homocysteine Study
holoTC	holotranscobalamin
IF	Intrinsic factor
ISAK	International Society for the Advancement of Kinanthropometry
IUGR	Intrauterine growth restriction
kcal	Kilocalorie
kg	Kilograms
LBW	Low birthweight
LDL-C	Low density lipoprotein-cholesterol
LMP	Last menstrual period
Math Model	Mathematical Model of Pregnancy
MJ	Megajoule

MMA	Methylmalonic acid
MMA-CoA	Methylmalonyl coenzyme A
MRI	Magnetic resonance imaging
mTHF	Methyltetrahydrofolate
NATA	National Association of Testing Authorities
NHMRC	National Health and Medical Research Council
NRVs	Nutrient Reference Values
NSW	New South Wales
NTDs	Neural tube defects
NUTTAB	Nutrient tables for use in Australia
OR	Odds ratio
PAR	Predictive adaptive response
pB12	Plasma vitamin B12
рНсу	Plasma homocysteine
PhD	Doctor of Philosophy
PPAQ	Pregnancy Physical Activity Questionnaire
PPAR-a	Peroxisome proliferator-activated receptor-alpha
PTD	Preterm delivery
rcFol	Red cell folate
RDI	Recommended dietary intake
RNA	Ribonucleic acid
RR	Relative risk
SAS	Statistical Analysis Systems
SD	Standard deviation
SE	Standard error of the mean
SGA	Small for gestational age
SIDS	Sudden infant death syndrome
Suc-CoA	Succinyl-CoA
TC	Transcobalamin
THF	Tetrahydrofolate
TIHS	Tasmanian Infant Health Survey
TNF- a	Tumour necrosis factor-alpha
UK	United Kingdom
UL	Upper level
USA	United States of America
WATCH	Women and their Children's Health
WFR	Weighed food record
WHO	World Health Organization

Thesis Publications and Presentations

AWARDS

- Nutrition Society of Australia, Early Career International Conference Scholarship, awarded December 1, 2008.
- The University of Newcastle, Faculty of Health, 10 of the Best, Research Higher Degrees Showcase Finalist, awarded September 26, 2008.

PUBLISHED ARTICLES

- 1) Hure A, Young A, Smith R, Collins C. Diet and pregnancy status in Australian women. Public Health Nutrition 2008: 1-9.
- Hure AJ, Smith R, Collins CE. A recruiting failure turned success. BMC Health Services Research 2008; 8:64.

ORAL PRESENTATIONS WITH PUBLISHED ABSTRACTS

- Hure AJ, Collins CE, Smith R. Maternal and infant vitamin B12, folate and homocysteine in pregnancy and postpartum. Proceedings of the Nutrition Society of Australia 32nd Annual Scientific Meeting, Asia Pacific Journal of Clinical Nutrition 2008; 17 (Suppl 3): S96.
- Hure AJ, Giles WB, Smith R, Collins CE. Maternal weight change in pregnancy predicts fetal size but not adiposity. Proceedings of the 4th Australian Health and Medical Research Congress 2008: p.284.
- Hure AJ, Young AF, Smith R, Collins CE. Is diet quality higher during pregnancy? Proceedings of the Perinatal Society of Australia and New Zealand 11th Annual Congress, Journal of Paediatrics and Child Health 2007; 43 (Suppl 1): A43-44.

4) Hure AJ, Young AF, Smith R, Collins CE A comparison of diet quality in young Australian women according to pregnancy status. Proceedings of the Nutrition Society of Australia 30th Annual Scientific Meeting, Asia Pacific Journal of Clinical Nutrition 2006; 15 (Suppl 3): S53.

POSTER PRESENTATIONS WITH PUBLISHED ABSTRACTS

- Hure A, Wright I, Smith R, Collins C. Nutrient supplementation in pregnancy: development of evidence-based best-practice guidelines. Proceedings of the Perinatal Society of Australia and New Zealand 13th Annual Congress, Journal of Paediatrics and Child Health 2009; 4(Supp.1): A124.
- Hure AJ, Collins CE, Smith R. Maternal weight change in pregnancy predicts fetal size but not adiposity. Proceedings of the 56th Annual Meeting of the Society for Gynecologic Investigation, Reproductive Sciences 2009;16(3): 555.
- Hure AJ, Collins CE, Smith R. Maternal pregnancy folate predicts homocysteine in the six month old infant. Proceedings of the 56th Annual Meeting of the Society for Gynecologic Investigation, Reproductive Sciences 2009;16(3): 556.
- 4) Hure AJ, Smith R, Giles W, Somerset D, Collins CE. Fetal fatness is not associated with maternal adiposity in pregnancy. Proceedings of the 5th International Congress on the Developmental Origins of Health and Disease, Early Human Development 2007; 83 (Suppl 1): S161.
- 5) Hure AJ, Smith R, Collins CE. Methodological barriers to studying the predictive adaptive response in humans. Proceedings of the 10th International Congress on Obesity, Obesity Reviews 2006; 7 (Suppl 2): 152.
- Hure AJ, Smith R, Collins CE. Energy intake versus expenditure in breastfed infants: Aren't we missing something? Proceedings of the Dietitians Association of Australia 24th National Conference, Nutrition and Dietetics 2006; 63 (Suppl 1): A40.

INVITED SPEAKER PRESENTATIONS

- 1) Hure AJ. A nutritional journey. Proceedings of the John Hunter Children's Hospital Annual Neonatal Seminar, Hunter Valley, Australia, April 11, 2008.
- Hure AJ, Smith R, Collins CE. Nutritional genomics concerning mothers and babies. Meeting of the Newcastle Branch of the Nutrition Society of Australia, Newcastle, Australia, August 25, 2006.

Abstract

Maternal factors prior to conception and during pregnancy may influence the development of the metabolic, cardiovascular and endocrine systems of the offspring and subsequent disease pathogenesis. This thesis explores the concept of the developmental origins of health and disease.

Human observational research studies were undertaken to test the relationships amongst maternal dietary intake, weight gain during pregnancy and changes in biochemical markers between pregnancy and postpartum for the mother and infant. This thesis presents three chapters of original research related to maternal and fetal nutrition, and one chapter of empirical data concerning the methodological challenges faced when recruiting for research purposes.

An analysis of dietary intake data from the young cohort of the Australian Longitudinal Study on Women's Health was used to determine the overall diet quality in a contemporary cohort, and to assess whether those who are pregnant eat differently to those who are not. Only small differences in diet quality and nutrient intakes were detected between pregnancy groups, and diet quality scores were consistently low. When the intake data were compared to Australian recommendations it appears that many young women fail to reach key nutrient targets, including those set for folate, fibre, calcium, iron, potassium and vitamin E.

The research focus then shifted to prospective longitudinal data collection for women and their children during pregnancy and after birth. Low recruitment to this component of the studies threatened the potential to achieve the research aims. Rather than jeopardising the power of the investigations efforts were made to understand what had gone wrong and how the situation could be rectified.

An investigation of the relationship between fetal adiposity and maternal weight changes in pregnancy was performed. Pre-pregnancy body mass index (BMI) and weight changes during pregnancy were taken as broad markers of maternal nutritional status and energy regulation. Intrauterine growth, including the accumulation of adipose tissue, was assessed using serial ultrasounds. Fetal size was positively related to maternal pre-pregnancy weight (and BMI) and weight gain (change in BMI) during pregnancy. Maternal pre-pregnancy weight was positively associated with adiposity at the fetal abdomen, but not the thigh. However, overall maternal weight gain was not associated with fetal adiposity.

To then determine whether maternal vitamin B12 and folate (methyl donors) in pregnancy could influence the offspring's homocysteine metabolism at birth, changes in plasma vitamin B12, plasma folate and red cell folate were characterised for the cohort of more than 100 women during pregnancy and up to six months after birth. A small sub-sample of infants also had blood collected at six months postpartum. Average maternal plasma folate during pregnancy was significantly predictive of infant plasma homocysteine.

In conclusion, the research outlined herein demonstrates important interactions between the mother and her offspring during the critical windows of early development. The research is multidisciplinary in its application and contributes to our understanding of some of the nutritional influences in pregnancy and postpartum for women and their children.